skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pate, Keith"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fluid power systems can be expensive and difficult to access, making it challenging to provide hands-on training. This work discusses the incorporation of Mixed Reality (MR) technology in Fluid Power applications for providing a virtual training environment that simulates the behavior of fluid power systems, allowing users to receive immediate feedback on the system’s performance. Mixed reality is a digitized-based technology that integrates a virtual environment with our real world by utilizing real-world sensor data and computer models. This technology allows running simulations that examine the complexity of highly-coupled systems, producing new digital environments where physical and digital elements can interact in real-time. With all these features, MR technology can be a practical training tool for running virtual simulations that mimic real-life industry settings. It can extend the user with a virtual training environment, thus preparing the next generation of fluid power engineers and specialists. Throughout this work, we present the development and capabilities of a digitized virtual copy of a hydraulic excavator’s arm in an MR environment as a proof of concept. The MR arm module is developed and deployed using Microsoft’s Mixed Reality Tool Kit (MRTK) for Unity through HoloLens 2 MR headset. The MR development involves generating virtual copies of the mechanical and hydraulic subsystems, conducting the virtual assembly, and creating a user interface in the MR environment to visualize and interact with the model. The developed MR module enables visualizing the excavator’s internal structure, conducting the virtual assembly, and running virtual simulations, all of which assist in training future fluid power operators. It is an effective training tool that helps train junior engineers/technicians, cutting down on cost and time. 
    more » « less
  2. Digital hydraulics is a discrete technology that integrates advanced dynamic system controls, digital electronics, and machine learning to enhance fluid power systems’ performance, overall efficiency, and controllability. A mechanically actuated inline three-piston variable displacement digital pump was previously proposed and designed. The inline three-piston pump incorporates complex mechanical and hydraulic subsystems and highly coupled mechanisms. The complexity of the utilized subsystems poses challenges when assessing the viability of the conceptual design. Therefore, this work focuses on designing, developing, and implementing a collaborative virtual platform involving a digitized module showcasing the internal mechanical structure of the digital pump utilizing mixed reality (MR) technology. MR technology is acknowledged as the forthcoming evolution of the human–machine interface in the real–virtual environment utilizing computers and wearables. This technology permits running simulations that examine the complexity of highly coupled systems, like the digital pump, where understanding the physical phenomenon is far too intricate. The developed MR platform permits multiple users to collaborate in a synchronized immersive MR environment to study and analyze the applicability of the pump’s design and the adequacy of the operated mechanisms. The collaborative MR platform was designed and developed on the Unity game engine, employing Microsoft Azure and Photon Unity Networking to set up the synchronized MR environment. The platform involves a fully interactive virtual module on the digital pump design, developed in multiple stages using Microsoft’s Mixed Reality Tool Kit (MRTK) for Unity and deployed in the synchronized MR environment through a HoloLens 2 MR headset. A research study involving 71 participants was carried out at Purdue University. The study’s objective was to explore the impact of the collaborative MR environment on understanding the complexity and operation of the digital pump. It also sought to assess the effectiveness of MR in facilitating collaboration among fluid power stakeholders in a synchronized digital reality setting to study, diagnose, and control their complex systems. Surveys were designed and completed by all 71 participants after experiencing the MR platform. The results indicate that approximately 75% of the participants expressed positive attitudes toward their overall MR platform experience, with particular appreciation for its immersive nature and the synchronized collaborative environment it provided. More than 70% of the participants agreed that the pump’s collaborative MR platform was essential for studying and understanding the complexity and intricacy of the digital pump’s mechanical structure. Overall, the results demonstrate that the MR platform effectively facilitates the visualization of the complex pump’s internal structure, inspection of the assembly of each of the involved subsystems, and testing the applicability of the complicated mechanisms. 
    more » « less